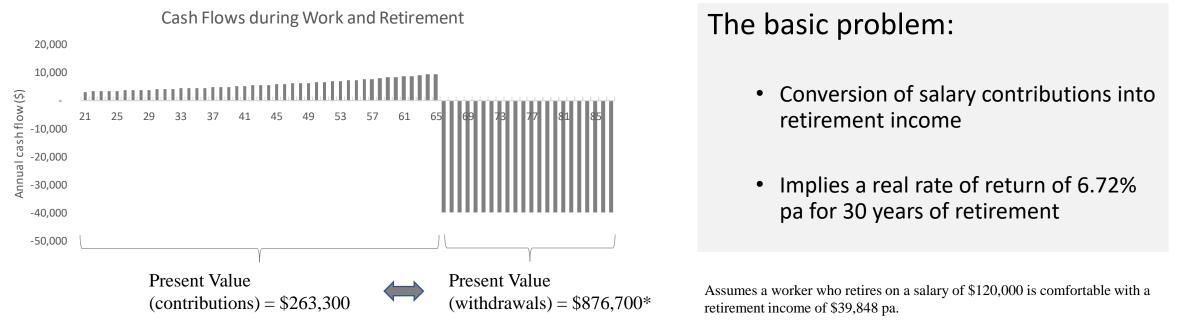


Investment Risk vs Investor Risk A quick journey through retirement income sufficiency


Professor Jason West

December 2019

Wealth generation

This is not a rehearsal

BUT...

* Assuming mortality at 87 years...if mortality = 95 years, then PV = \$1,195,500

US markets (1978-2018)**:

- 60/40 stock/bond portfolio has generated real returns of 6.86% pa
- 70/30 stock/bond portfolio has generated real returns of 7.20% pa

** If retirement date was the GFC historical portfolio returns are: 60/40 = 6.36% pa; 70/30 = 6.58% pa

ance

<u>fourier</u>

fourier finance Retirement headwinds Increasingly difficult to meet expectations Average Life Expectacy Australia Longevity 80 United Kingdom Today's global average life expectancy (71 Age (years) **United States** years) is higher than that of any country in 60 - World 1950* 40 *except a handful in Northern Europe 20 1543 1574 1604 1635 1665 1696 1818 1849 1880 1908 1939 1969 2000 1727 1788 1757 Source: United Nations Population Division and Human Mortality Database (2015) 500 Investment Returns and Volatility 400 nvestment Amplified risk-return ratios imply that good 300 returns are only possible through accepting 200 greater risks 100 1960 1970 1980 1990 2000 2010 S&P 500 Index adjusted for inflation, bounded by ±2 x standard deviation of returns US 10-Year Treasury Constant Maturity Rate Immunisation 15.00 Annuities are more costly today than ever, 10.00 8 5.00 producing little demand for portfolio 5.00 immunization products 0.00 1962 1970 1978 1986 1994 2002 2010 2018

Source: Board of Governors of the Federal Reserve System

Glidepaths...designed for the *average* investor

fourier finance

Using Target Date Funds to manage retirement risk

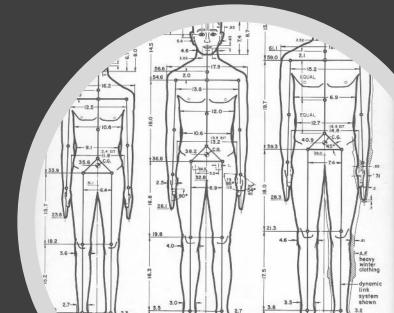
Glidepaths completely ignore retirement income sufficiency

The goal appears to be:

"...amass as much wealth as possible and hope you don't outlive it..."

fourier finance

Wealth paths for the highest, median and lowest wealth at retirement for 70/30 stock/bond TDF reducing to 60/40 ten years prior to retirement date and 30/70 five years prior to retirement date (1972-2018).


The flaw of averages

- Measured physical features from a sample to standardise cockpit dimensions.
- USAF had a serious problem...pilots could not keep control of their planes. Cause? Human error.
- Follow-up analysis of 4,000 pilots to determine a new average
- The mean of 10 physical dimensions to represent the dimensions of the "average pilot" (±15%)
- How many pilots scored average on all 10 physical dimensions?

Zero

Not a single airman fit the average

"If you've designed a cockpit to fit the average pilot then you've designed it to fit no-one" Lt. Gilbert S. Daniels (USAF)

The USAF radically changed their design philosophy:

Don't fit the individual to the system Fit the system to the individual

Retirement income sufficiency

14.00% 12.00% 10.00% 8.00% 6.00% 4.00% 2.00% 0.00% 85 59 63 67 71 75 79 83 Age Source: Australian Taxation Office (2015). **Asset-based retirement Income** \$60,000 \$50,000 Age Pension Growth \$40,000 Drawdown م \$30,000 \$20,000 \$10,000 \$-65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

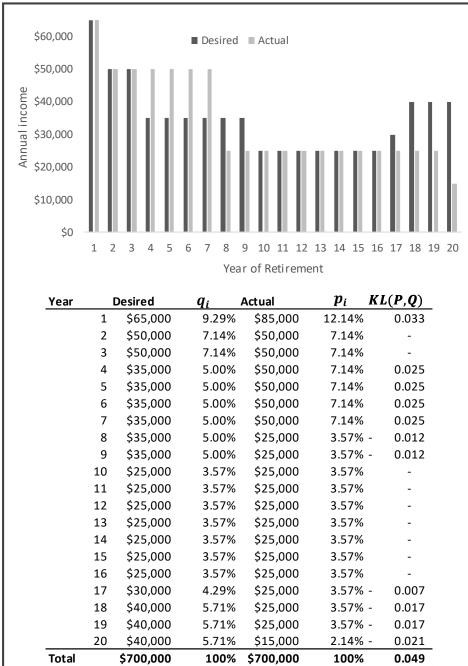
Age

Withdrawal rates in retirement

Assumption of constant retirement income is flawed

Income Sufficiency: An example

Entropic distance


Kullback and Leibler cross-entropy

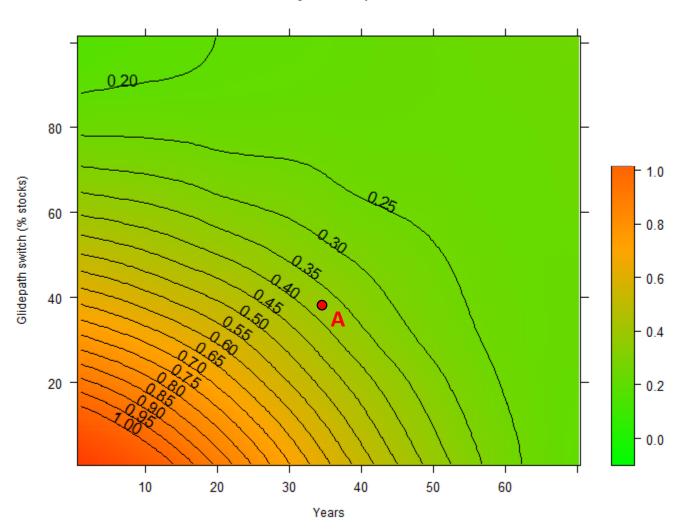
$$KL(P,Q) = \sum_{i=1}^{n} p_i \log \frac{p_i}{q_i}$$

p and q denote the probability densities of P and Q

Entropy is not simply *a* measure of uncertainty;

It is the measure of uncertainty.

Glidepath topography


The "average" investor

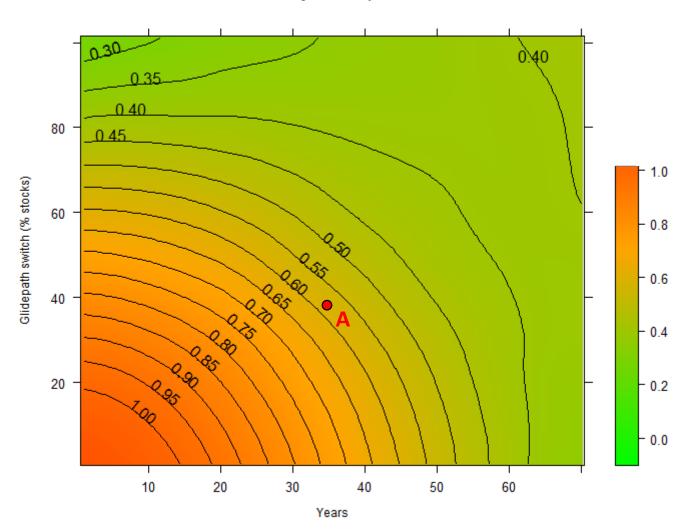
Work 45 years Retire 25 years

Contribution 9% pa Starting salary \$50,000 pa Salary growth 1% pa (real) Initial allocation 80/20 **Retirement income \$39,000***

* ½ of final salary

Stock returns 6.05% pa real Stock volatility 13.1% pa Bond returns 1.99% pa Bond volatility 4% pa Cor(stocks, bonds) 30%

Forced early retirement


Three years too early

Work 42 years Retire 28 years

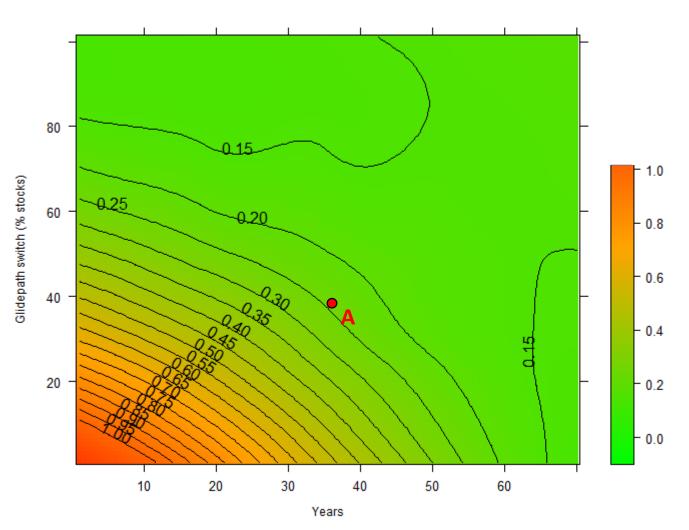
Contribution 9% pa Starting salary \$50,000 pa Salary growth 1% pa (real) Initial allocation 80/20 **Retirement income \$38,000***

* ½ of final salary

Stock returns 6.05% pa real Stock volatility 13.1% pa Bond returns 1.99% pa Bond volatility 4% pa Cor(stocks, bonds) 30%

Work for longer

Three-year delay

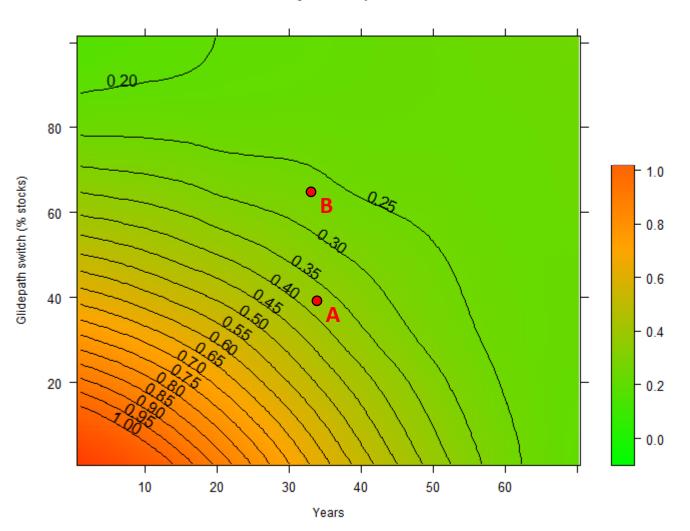

Work 48 years Retire 22 years

Contribution 9% pa Starting salary \$50,000 pa Salary growth 1% pa (real) Initial allocation 80/20 **Retirement income \$40,300***

* 1/2 of final salary

Stock returns 6.05% pa real Stock volatility 13.1% pa Bond returns 1.99% pa Bond volatility 4% pa Cor(stocks, bonds) 30%

fourier finance



Career change

Glidepaths assume salary grows slowly

fourier finance

Ruin Probability of Glidepath Alternatives

Work 45 years Retire 25 years

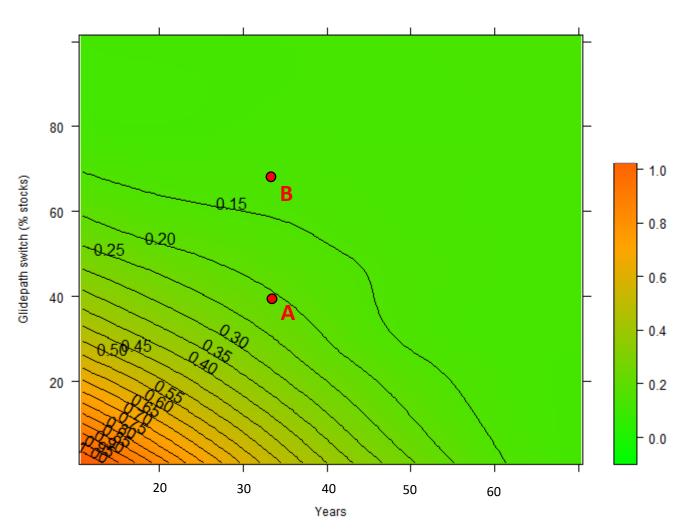
Contribution 9% pa Starting salary \$50,000 pa Salary growth 1% pa (real) Initial allocation 80/20 **Retirement income \$43,000***

* ASFA comfortable (single)

Stock returns 6.05% pa real Stock volatility 13.1% pa Bond returns 1.99% pa Bond volatility 4% pa Cor(stocks, bonds) 30%

Career change

Salary doubles after 10 years


Work 45 years Retire 25 years

Contribution 9% pa Starting salary \$50,000 pa Salary growth 1% pa (real) Initial allocation 80/20 Retirement income \$61,000*

* ASFA comfortable (single)

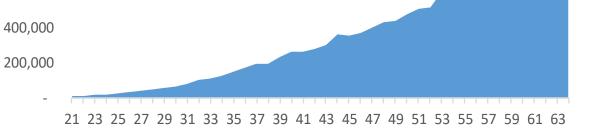
Stock returns 6.05% pa real Stock volatility 13.1% pa Bond returns 1.99% pa Bond volatility 4% pa Cor(stocks, bonds) 30%

fourier finance

fourier finance

Dual risk approach

Mainsail Portfolio (for protection)


Safety-first, insurance-like sub-portfolio to maximize the probability of meeting investors' retirement liabilities - a retirement liability hedge.

Spinnaker Portfolio (for growth)

A complementary but separate growth-focused subportfolio aiming to maximize performance beyond retirement income security.

fourier finance A dual risk approach? Split portfolio profile 50th pct Mainsail Portfolio 95th pct Spinnaker Portfolio

1,600,000

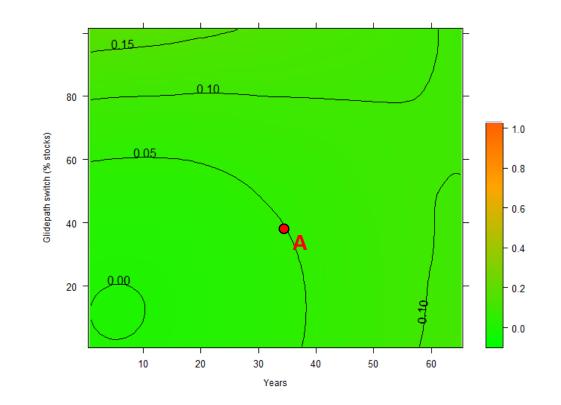
1,400,000

1,200,000

1,000,000

800,000

600,000


Age

Scenario Analysis "Stocks are stories, bonds are mathematics"

Bond yields remain at 1% pa (real)

Bond yields jump to 4% pa (real)

Topography outcomes

•

•

•

assets

Dependent on longevity, markets, & desired income

Viable when stock Glidepaths can be adjusted to fit Viable when volatility < 15% pa correl(S,B) < 0.25 every "average" investor. 80 Viable when stock volatility < 15% pa & correl(S,B) < 0.25 Glidepath switch (% stocks) So long as we account for: 60 Usually viable, Tendency to underspend income dependent Tendency to overestimate longevity 40 Retirement income variability Updating glidepath decision points as markets shift Viable when bond rates > 6% pa (real) Almost never viable 20 Updating glidepath as personal & correl(S,B) < 0.3 circumstances change Impact of other diversifying 20 30 50 10 60 40

Professor Jason West PhD CIMA CPA Director, Fourier Financial Group Brisbane, Australia Questions? Thank you